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Lesson 5



Tentative list of topics to cover:

* From statistics and linear algebra to power spectral densities

« Historical perspectives and examples in many areas of
physics

« Correlation functions in classical optics (field-field; intensity-
intensity; field-intensity) part iii

« Optical Cavity QED

« Correlation functions in quantum examples

« Correlations of the field and intensity

« Correlations and conditional dynamics for control

* From Cavity QED to waveguide QED.



More about shot noise



Light detection (shot noise)
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The field A(t) produces a photocurrent with charge Q.
lonization happens in a period At such that it is small

enough to only have one electron in each At. p, is a
random variablr

1) =) QU — li)ps.
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We have to calculate the power spectral

: density -
() = / (ANt + 7)) 97,

Correlation function
(AiBAI(E+ 7)) = (i(D)i(t + 7)) ~ (i)?

The correlation is:

(i(8)i(t + 7)) = < Z QU = L) Z <J(!+T—-f..,-)z».,->
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What Glauber taught us
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The photocurrent could be due to beating, arbitrary

local oscillator power
A
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Local Oscillator



The balanced homodyne detector
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Stokes argument
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the correlation with the A field

A= ?'AL() ol ZCAH.

First order in Ag

Clr) = RTAG[e 2 (At + 1) Ad0)) + H9AN ) AL+ 7))
+ (AL, Ag(t + 7)) + (AT 7), Au(8)],

But the fluctuations of the quadratures of the
electromagnetic field:

20(t) = e A(t) + Al() e
C(r) = RTAG (: zo(1), zalt +7) 2)



(A AL+ 7)) = Qoiold(T) +aT(: zall). 2ol 4 7) )],

(I)(Q,H) = Q()i()[l + (YTSH('SZ,(‘))I,

S (8, 0) = /dT e TG (1), zo (b T) )

This is the spectrum of squeezing



The power spectral density of shot noise
when S=0:

| L[ p-erange Q+AS/2
(AQ(S.0))%) = — / B(CL.0) A9 + / (0, 6) dO)
2m | oo aa J- a2

((AI(2))?) = 20)yinB. B=Bandwidth

But if there is squeezing S#0
({AG())?) = 2Quio B[1 + £S(L2,0)]
Taking into account propagation, o detection, n beating efficiency,

and p cavity exit efficiency, transmission from generator to

detectors T -
E=anylop



From a historical perspective the noise equations are
reminiscent of the 1909 Einstein paper on black body
radiation analyzing the energy fluctuations for a black
body. Einstein found that the variance in energy
((AE)?)within some small volume and frequency
interval could be written in terms of particle plus

wave contributions as:

((AE)?) = (hw)*(m) + ((AI)?)

First term are the particle fluctuations and the second
the wave fluctuations

(A AI(E+ 7)) = Qololo(T) + o' za() zo( 4 T) 9],



How to correlate fields
and intensities?



Detection of the field: Homodyne.

Conditional Measurement: Only
measure when there is a large
flucuation.



The Intensity-Field correlator.

Correlator

Trigger BHD Photocurrent

PARTICLE

N
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Local Oscillator

H(z) = g%/?(z) = (I(0)E(t + 1))



Balanced homodyne detector suppresses technical
common noise.

The correlator is a digital storage oscilloscope;
Only average the photocurrent if there is a
fluctuation.

The average of noise is zero.



GV (7)== (EXt)E(t + 7)) (4)
GC/D(7) = (EXOED)EXNt + T)EW(t + 7)) +cc.  (5)

G(7) = (EXOEM EXNt + 1) E( + 7). (6)

Where &,(t) = Ay, exp(—iwy,t), with Ay, = Ej, exp(i0), 1s a
coherent local oscillator with the same deterministic mode
wip = (w) than the field.
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Let Esexp(i¢) be the non-zero average steady part in the
complex amplitude of a field £(¢). Let 6 A (1) be the fluctuations

of the complex amplitude, we assume that the moments of third
order for the fluctuations {0A(f)} are negligible compared to
the lower orders. The intensity-field correlation function
g%/2(7) is classically defined by (8). Because of the steady part
Es;exp(i¢) in the complex amplitude of the field, both the
numerator and denominator in (8) are non zero. We will show
that this correlation function captures the evolution of a
quadrature of the field, depending on the relative phase (¢ — 0)
between the local oscillator and the field.



A1) = %{Amexp(—iu) + A% exp(ip)].

The capture of a quadrature
evolution is conditioned on an
intensity fluctuation because of
the term &(t)E*(t) and its c.c.

GO/D(1) = (EX)EM)EXt + T)E(t + T)) + c.c.



(6A,4(1)6A4(t + 7))
EZ + ([6A(DPR)

g®/2(1) = cos(¢ — ) +

When the phases are equal (¢ = 0) it becomes:
(6A4(1)6A4(t + T))

(3/2) —~
g Ny =1+ .
E2 + (|6A(t)P)




These are the fluctuations of the quadrature
The calculation of the S/N ratio requires taking
iInto consideration what is the signal. Usually
the difference between g("(0) and g™ (t>>0).

Also the response function of the detector

Shot and Technical noise.



The classical correlations are related
one to the other if the random process
IS Gaussian or similar.



T (1) = It +7)) = (E*()E*(t + 7)E(t + 7)E(t)).

times. For a thermal source with Gaussian statistical distribution, we can
apply the Gaussian moment theorem (see Isserlis theorem in Eq. (1.28)):

(ABCD) = (ABY(CD) + (AC)(BD) + (AD)(BC). (4.27)

T (r) = (B*(t)E* (t + 7))(E(t + 7)E(t))
+HE*()E(t+ 7)) (E*(t + 7)E(t))
+HE()E@)E (t+7)E(t+T1))
= [(7)|> + T(0)/?,



where, due to the randomness of the phase of the field, (E*(t)E*(t+ 7)) =
0= (E(t+7)E(t)). Hence, the normalized intensity correlation function is
4@ (r) = (E*(t)E*(t+1)E(t +7)E(t))
 (E*(O)E@))(EX(t+T1)E(t+ 1))
=T®(7)/[LO) =1+ (7)I%, (4.29)




Condition on a Click
Measure the correlation function of the Intensity and
the Field:
<I(t) E(t+7)>
Normalized form:
he(t) = <E(t)>. /<E>

From Cauchy Schwartz inequalities:
0< 7 (0)-1<2

y(2) = 1| <[y (0) -1



Question:

Is the S/N ratio better in g(¥2) than in g\@ for
measurements of the diameter of stars (classical

sources)?

A. Siciak, M. Hugbart, W. Guerin, R. Kaiser, L. A.
Orozco "A comparison of g{')(1), gt32)(t), and g?)(t) for
radiation from harmonic oscillators in Brownian motion
with a coherent background, " Physica Scripta 95,
104001 (2020) https://doi.org/10.1088/1402-
4896/abac37 pdf



https://iopscience.iop.org/article/10.1088/1402-4896/abac37
https://www.physics.umd.edu/rgroups/amo/orozco/publications/Siciak_Phys_Scr_2020(Correlations).pdf

Thanks



Correlation functions tell us something about the
fluctuations.

Correlations have classical bounds.
They are conditional measurements.

Can we use them to measure the field associated
with a FLUCTUATION of one photon?



Correlation function; Conditional measurement.

Detect a photon: Now follow the evolution of the
conditional quantum mechanical state in the system.

The system has to have at least two photons.
Do we have enough signal to noise ratio?

ILOJ? + 2 LO S cos (¢)
SHOT NOISE SIGNAL



Relation with the harmonic oscillaros:
Quadratures of the electromagnetic field

1/2 1/2
Eg = (22:)‘/) cos(d)X  and E; = (2?:)‘/) sin(B).X

H=hw(P?+X?), with [X,P]EXP—PX:%I
(X — (X)) |a) = =1 (P —(P)) |a)
(X +iP) |a) = (X +iP) |a)

States of minimum uncertainty :

(a (X —(X)* + (P~ (P))" |a) =1/2

Relation with Fock states (Poisson)

pe) = (o = e~




PARTICLE

APD

LOCAL
OSCILLATOR

CORRELATOR

PHOTOCURRENT



Photocurrent average with random conditioning
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Conditional photocurrent with no atoms in the cavity.
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Averave photocurrent into 50 Q2 (mV)
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Averave photocurrent into 50 Q (mV)
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Averave photocurrent into 50 QQ (mV)
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Averave photocurrent into 50 Q (mV)
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AC Photocurrent (LA)

Flip the phase of the Mach-Zehnder by 146°
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Monte Carlo simulations for weak excitation:
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